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Abstract

Convolutional neural networks have become the de-facto standard solution for most computer vision
problems. Thanks to advances in computer performance and the development of open high-end deep
learning libraries, automating a simple vision task only involves gathering a reasonable dataset, that
mimics the conditions in which the network will be deployed, and training a suitable network on that
dataset, with some extra considerations and tuning to avoid underfitting or overfitting the dataset.
This problem becomes more difficult when the dataset on which the network is trained on does not
fully represent the scenarios on which the network will be immersed. For example, a network that is
trained in a simulated environment may not perform well when it is tested in a real environment, due
to the differences between the simulated and real environments. This situation requires networks that
are able to generalize at a deeper level. The networks must be robust to changes in their environment.
Therefore, in the case of a vision task, they must rely mostly on high-level object shapes rather than
low-level image textures to correctly identify objects across environments. Throughout this work we
will explore the inner workings of convolutional neural networks, review some of their applications and
propose a novel randomized image texturization method that can make make networks rely less on
texture and more on the shape of objects.
Keywords: Computer Vision, Deep Learning, Convolutional Neural Networks, Domain Generaliza-
tion, Texture Bias

1. Introduction

The usage of machine learning models in the crit-
ical systems of vehicles and aircraft has long been
desired to automate their functions. Good exam-
ples include the increased interest in autonomous
driving [1] and the recent demonstration of full au-
tonomous flights by an Airbus commercial aircraft
[2]. One of the key steps to the deployment of a
good computer vision solution, besides the choice
of a trustworthy algorithm, is the construction of
a large and representative dataset on which the
algorithms can be successfully trained. This in-
volves the manual annotation of thousands of im-
ages which can take more than one hour each, de-
pending on the task, to achieve good results.

One possible solution to this problem would be
the training of such algorithms in a simulated envi-
ronment, like a driving simulator or a video game,
where different objects in a scene can be automat-
ically annotated, thus saving thousands of hours of
human labor and allowing the creation of diver-
sified training scenarios. Training on a simulator
would allow the algorithm to learn in many different
and rare scenarios that it would not observe often

enough on real training images, thus guaranteeing
more control over those situations.

Although the Convolutional Neural Network
(CNN) architecture offers outstanding performance
in image processing tasks, it does so only when the
images on which it is tested on come from the same
domain as the ones that were used to train the
algorithm. This is the problem of out-of-domain
(OOD) performance degradation. A domain shift
may include simple transformations like a colour
shift, noisy images, camera artifacts, camera posi-
tion, image scale, or more complex differences like
the fact that an image of an object can be a pho-
tograph, a drawing, a painting or the result of a
render from a simulation. Furthermore, real world
images themselves can exist in multiple domains,
such as different times of the day, lighting condi-
tions and weather. Any of these domain shifts can
catastrophically affect the performance of CNNs.
The problem of domain adaptation/generalization
remains an open problem with no algorithm being
capable of achieving human-level generalization to
new unseen domains and with any unknown domain
shift.
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2. Background

The backbone of many modern computer vision
and image processing algorithms are Convolutional
Neural Networks. This family of architectures mim-
ics the visual system of animals [3] and humans [4],
where low-level features like points, edges and tex-
tures are combined to form mid-level features like
shapes, curves and more complex textures. These
mid-level features are then combined to form high-
level features like faces, bodies, animals, objects,
locations and backgrounds (see Figure 1). Finally
the high level features are used to perform various
tasks such as object classification, detection or im-
age segmentation.

Figure 1: Feature Hierarchy leaned by GoogLeNet on the
ImageNet dataset.

Gradient based CNNs were first applied to image
processing by [5] in 1989 for digit recognition and
considerably outperformed any previous technique.
They were later used for tasks such as document
recognition in 1998 [6].

It wasn’t until the increase in computational
power, its parallelization using Graphical Process-
ing Units (GPUs) and the construction of large la-
beled image datasets such as ImageNet [7], that
a breakthrough occurred in natural image process-
ing. In 2012 [8] introduced AlexNet, a deep CNN
capable of classifying images into 1000 different
classes with a high degree of accuracy. Alexnet was
trained by leveraging the parallel processing power
of Graphical Processing Units to achieve a great
increase in model capacity. From 2012 onwards,
novel architectures established new state-of-the-art
performances every year, such as deeper VGG (Vi-
sual Geometry Group) networks [9] and residual
networks [10], which surpassed human-level perfor-
mance.

Besides image classification, convolutional archi-
tectures also found application in algorithms for ob-
ject detection [11] and semantic segmentation [12],
in Auto-Encoders [13] and in Generative Adversar-
ial Networks [14]. These algorithms can then be
used in many types of downstream tasks such as
self-driving [15], robotics [16], visual tracking [17],
image captioning [18], image super-resolution [19],
image colorization [20], image style transfer [21] and
deep dreaming [22].

2.1. Multi-Layer Perceptron
A Perceptron (commonly called Neuron) is the most
basic unit of a neural network. It receives several
inputs xi and multiplies each of them by a weight
wi. The resulting values are added together, along-
side an extra bias term b, and passed through an
activation function f , as seen in Figure 2. A sin-
gle Perceptron can perform linear regression when a
linear activation is used and can perform logistic re-
gression when using a Sigmoid activation function.

Figure 2: Schematic of a single Perceptron.

Multiple Perceptrons with the same inputs can be
combined to form a fully connected layer, also called
a dense layer. A Multi Layer Perceptron (Figure 3)
is created by composing multiple of these layers in
sequence, forming a neural network:

Figure 3: Schematic of a Multi Layer Perceptron.

In a regression task, the parameters from all the
neurons (weights and biases) will be learned such
that the neural network function approaches, as
closely as possible, a set of points (x,y)i from a
training dataset. In a classification task, the weight
will be learned such that, given an input, it pro-
duces vector with the likelihood of belonging to each
of the possible classes. The objective is to predict
a high likelihood for the true class and, by con-
struction, a low likelihood for the incorrect classes.
Since we want to estimate the likelihoods of ev-
ery class as the result of the last layer, we want
the sum of the components of the output vector to
equal 1. To accomplish this, the activation function
of the last dense layer is replaced by the Softmax
function. The networks are trained by minimizing
a loss function that compares the expected output
and the network predictions. This loss fucntion is
minimized when the network prediction match the
expected output.

The process of training a neural network is com-
prised of three operations that are repeated through
many iterations until the network performs well.
The first operation is forward propagation, where
the inputs are propagated through the network and
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the final loss is calculated. All neuron activations
are saved so that the next step, back-propagation,
can occur. This second step involves using the chain
rule of derivation to calculate the gradient of the
loss function with respect to every single learnable
parameter. The final operation consists of perform-
ing an update of the weights in the opposite direc-
tion of the gradient, thus slowly minimizing the loss
function.

2.2. Convolutional Neural Networks
Convolutional Neural Networks are deep neural net-
works that apply at least one convolution opera-
tion. When used for image processing, two dimen-
sional convolutions are employed to take advantage
of the spatial relationship between the pixels of an
image. The relationship between a pixel and its
closest neighbours is far more important than its
relationship with the pixels on the other side of the
image. Therefore it is far more efficient to compute
inter-pixel relationships using kernel convolutions.
A convolution operation can be described as slid-
ing a kernel matrix over a larger input matrix. The
values of the input matrix are multiplied element-
wise by the weights in the kernel matrix and finally
added together to produce a value in the resulting
output matrix. Each element in the resulting ma-
trix corresponds to one position of the kernel over
the input matrix, as seen in Figure 4.

Figure 4: Convolution Operation.

A convolution layer performs multiple operations
of this type. The input consists of multiple ma-
trices, commonly called feature maps or channels.
A filter is comprised a kernel matrix for each of
the input channels. A convolution operation is per-
formed for each of the kernels in the filter and the
corresponding input maps. The results of these op-
erations are added element-wise to produce a single
output feature map. A convolution layer can have
many of these filters, creating multiple output fea-
ture maps, as shown in Figure 5. Since convolu-
tions are linear operations, a non-linear function is
applied to each output channel to give the network
non-linear regression capabilities.

A convolutional neural network consists of the
composition of many of these layers to produce a
complex set of features that can be easily used to
produce accurate image classifications. This pro-
cess is called feature extraction and is done auto-
matically through the learnable parameters of the

Figure 5: Multi-filter convolution with 3 input channels
(RGB image), and 2 output channels.

network. Image classification CNNs are completed
with a classification head. This classification head
transforms the final feature maps by flattening them
into a 1 dimensional vector and feeding it through a
fully connected Multi Layer Perceptron, as in Fig-
ure 6. Training the full network is done with the
gradient descent algorithm described in section 2.1,
where now the dataset contains tuples of images
and the respective labels.

Figure 6: LeNet - Convolutional architecture used for char-
acter recognition in [6], where each plane is a feature map
and the final 3 layers are fully connected.

Until now we described convolutional neural net-
works in the context of supervised image classifi-
cation, assuming that each image only portraits a
single object of interest. In typical real-world appli-
cation this framework must be extended to images
where one or more objects may be present, or none.
The algorithms should therefore be able to identify
all the objects in the images as well as their respec-
tive positions. We shall cover some of these appli-
cations since they will be the object of experiments
later in this work.

2.3. Semantic Segmentation
Semantic Segmentation consists of correctly la-
belling each pixel in an image according to what
class of objects it belongs to. The first use of a deep
convolutional neural network for semantic segmen-
tation was in [23], where fully convolutional neu-
ral networks (FCNs) were shown to be capable of
semantically segmenting images. The method con-
sists of simply taking a section of a common ar-
chitecture like a VGG16 network, adding an ex-
tra convolutional layer with the number of channels
equal to the number of classes, up-sampling the re-
sulting feature maps to the input size and finally
passing it through a soft-max layer. Each feature
map encodes therefore the network predictions of

3



the probability of each pixel belonging to a class
of object. These predictions are compared to the
true semantic maps with a cross-entropy loss, which
is minimized through a gradient descent algorithm.
Unknown objects and background pixels are usu-
ally assigned their own default class. To perform
inference, the class with highest probability is as-
signed to each pixel. This architecture is improved
by adding extra prediction layers at the early convo-
lutional layers of the encoder, upsampling the pre-
dictions to the full resolution and combining the
results of all prediction layers. Figure 7 showcases
the semantic segmentation task with a simple FCN
architecture.

Figure 7: Schematic representation of a basic FCN archi-
tecture for semantic segmentation.

Deeplab [24] is one of the most used architectures
for semantic segmentation. It employs dilated (also
called atrous) convolutions. This type of convolu-
tion uses dilated (sparse) kernels, which increases
the effective receptive field of each neuron without
increasing the computational cost of the layer.

The predictions of the network can be evaluated
using different performance metrics. The most com-
monly used metric is the mean Intersection over
Union (mIoU) between semantic predictions and
the true semantic segmentation maps. Let Ω be
the set of all pixels in the image, Pk ∈ Ω the set of
predicted pixels for a class k ∈ [1,K], Tk ∈ Ω the
set of true pixels for a class k, and |.| the cardinality
operator. The mIoU is calculated as:

mIoU =
1

K

∑
k

|Pk ∩ Tk|
|Pk ∪ Tk|

(1)

Later in this work, the FCN and Deeplab seman-
tic segmentation architectures will be subject to dif-
ferent experiments in the context of domain gener-
alization.

2.4. Object Detection
Object Detection consists of drawing a bounding
box around each known object in an image and cor-
rectly predicting its class. Passing from an image
classification task to an object detection task can
seem trivial. To detect multiple objects in an image
simply pass an image classifier in multiple patches
of the input image and consider a detection when
the confidence (probability prediction) for an object

is above a certain detection threshold. This can be
done in a rolling window fashion, at multiple scales
and aspect ratios. The problem becomes apparent
when we consider the number of forward passes that
a classifier would have to perform to detect all the
objects in a single image.

Some applications of object detection algorithms
require the detection to happen in real time, so per-
forming classification of all possible image patches
becomes infeasible. Even if this process is paral-
lelized to reduce the computation time, the shear
amount of floating point operations is completely
impractical.

R-CNNs [11] were the first improvement to this
method. They use a region proposal step, based
on a selective search algorithm [25], to select the
Regions of Interest (ROIs) that are more likely to
contain an object. The selected image patches are
further filtered by combining patches that overlap
or are included in each other. The different patches
are then resized to a fixed square resolution. A con-
volutional neural network processes each patch into
a feature vector. Finally, a SVM classifier [26] pre-
dicts the probability of each class from this feature
vector. The feature vector is also used to predict
an offset of the ROIs to produce the final bounding
boxes.

Faster R-CNN [27] further improves this architec-
ture by substituting the selective search algorithm
by a region proposal network (RPN). The region
proposal network is based on anchors, which are
predefined image patches, at different scales and as-
pect ratios. The region proposal network calculates,
for each of these anchors, a objectedness score indi-
cating the probability of an object being present in
that patch. This is achieved with one or more con-
volutional layers where the final layer has a number
of channels equal to the number of anchors. The
feature maps therefore represent the objectedness
score at each pixel for each possible anchor. In
the same manner as R-CNN, a final classifier layer
produces the class probabilities and a final regres-
sion layer produces the bounding box coordinates
from the feature vector. The full architecture is
presented in Figure 8.

Figure 8: Schematic of the Faster R-CNN architecture.

The Faster R-CNN architecture will be tested
later in this work in a domain generalization task.
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The performance of object detection algorithms
is typically measured using the mean Average Preci-
sion (mAP) and mean Average Recall (mAR) met-
rics. These are constructed by setting different Con-
fidence C and Intersection over Union IoU thresh-
olds, above which a detection respectively occurs
and is considered correct. The performance met-
rics are thus the precision and recall scores averaged
over a range of these thresholds.

APk =
1

NIoUNC

∑
IoU,C

TP

TP + FP

∣∣∣∣
IoU,C,k

(2)

ARk =
1

NIoUNC

∑
IoU,C

TP

TP + FN

∣∣∣∣
IoU,C,k

(3)

Finally, the performance metrics are constructed
by averaging these values across classes to produce
the mean Average Precision and the mean Average
Recall.

2.5. Auto-Encoders
Auto-Encoders (AEs) are a type of neural network
architecture whose purpose is to learn a lower di-
mensional representation of the data by passing it
through an information bottleneck and using that
low dimensional representation to reconstruct the
original data [28, 29]. An Auto-Encoder is com-
posed of an encoder network which maps inputs to
the lower dimensional latent space, and a decoder
network which maps the latent space to the origi-
nal higher dimensional input space (Figure 9). This
procedure forces the network to learn an internal la-
tent representation that captures as much informa-
tion about the data as possible. Auto-Encoders find
application in unsupervised representation learning,
image denoising, image compression and image in-
painting because of their ability to filter out ir-
relevant information. Auto-Encoders are usually
trained with a reconstruction loss which can be a
simple L2 distance loss, another distance metric or
even a pretrained and frozen neural network based
perceptual loss [30]. When applying Auto-Encoders
to images the encoder and decoder networks are
implemented as a vanilla CNNs with transposed
convolutions or other upsampling layers for the de-
coder.

Figure 9: Example of a Fully Convolutional Auto-Encoder.

2.6. Style Transfer
Image style transfer is the task of taking the con-
tent from an input image x and re-producing it in
the style of a style image s. The first instance of
CNN based style transfer happens in [21]. This was
achieved by optimizing the pixel values of the con-
tent image to minimize a content loss and a style
loss. Since this involves an optimization process,
producing a single stylized image is an expensive
process. Adaptive Instance Normalization (AdaIN)
opened the door to arbitrary style transfer [31],
where a single auto-encoder network, when fully
trained, can perform style transfer between any two
images in a single pass.

AdaIN is a moment-matching process. It is as-
sumed that the style information of the images is
fully represented in the first and second order mo-
ments of the feature maps produced by a pretrained
encoder network. The normalization process of
AdaIN is the following:

AdaIN(φx, φs) = σ(φs)

(
φx − µ(φx)

σ(φx)

)
− µ(φs)

(4)
where φx and φs are the latent feature maps of

the content and style images respectively, µ() is the
channel-wise mean and σ() is the channel-wise stan-
dard deviation of the latent feature maps.

The content and style losses evaluate the im-
ages produced by the decoder by re-passing them
through the encoder and comparing the feature
maps to the original ones. The content loss is given
by the mean squared reconstruction error. The style
loss is given by the mean squared error in the first
order and second order moments across all chan-
nels. This loss is averaged across the feature maps
produced at multiple layers of the encoder. The fi-
nal loss is the sum of the two losses weighted by an
hyper-parameter. The network is trained to em-
pirically minimize the expected value of the loss
through gradient descent. The complete style trans-
fer network is shown in Figure 10.

Figure 10: AdaIN architecture.

The encoder is a VGG network pre-trained on
ImageNet with a classical image classification task.
Learning the style transfer task consists of training
a decoder that is able to inverse the encoder when
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the feature map statistics are altered by AdaIN.
This stylization technique is therefore an example of
transfer learning, since the representations learned
by the encoder are used in a different downstream
task. The full style transfer network is then trained
using a content dataset and a style dataset.

2.7. Texture Bias in Convolutional Neural Net-
works

It is commonly assumed that CNNs owe much
of their performance to their ability of recogniz-
ing shapes. Many feature visualization techniques
[32, 22, 33] show that CNNs effectively learn edge
detectors, curve detectors, circle detectors, animal
face detectors and human face detectors. The multi-
layered and translation invariant architecture allows
the network to combine multiple of these shapes
to create more high-level shape detectors. It was
thought that the structured combination of these
features produced networks that were sensible to
high level shape cues.

However, some recent studies showed that CNNs
are in fact more texture biased than previously
thought. The authors of [34] used the original it-
erative style transfer technique [21] to generate a
Cue-Conflict dataset, based on ImageNet, with con-
flicting shape and textural cues. When these images
are presented to CNNs and to human subjects, the
CNNs are more likely to classify the image based on
texture/style than their human counterparts (Fig-
ure 11). The human subjects, on the other hand,
classified images mostly based on shape/content
cues.

Figure 11: Classification of a standard ResNet-50 of (a)
a texture image (elephant skin: only texture cues); (b) a
normal image of a cat (with both shape and texture cues),
and (c) an image with a texture-shape cue conflict, generated
by style transfer between the first two images.

This study then showed that the texture-bias
of CNNs can be attenuated by training the net-
work in another randomly stylized version of Im-
ageNet. This works as a data augmentation and
regularization technique. By making the textural
cues arbitrary with respect to the content, the net-
work must learn to classify the content of the im-
age purely based on the shape patterns. The data
augmentation thus renders the network texture in-
variant. Furthermore, networks that are trained on
the stylised dataset show more resistance to class-
preserving image transformations like, changes in
contrast, filtering and different forms of noise.

2.8. Generalization in Convolutional Neural Net-
works

In deep learning tasks it is expected that the train-
ing and testing data come from the same distribu-
tion. When this is not the case, we are presented
with an out-of-distribution (OOD) generalization
problem. This task consists of learning a source
distribution and being able to perform inference in
a target distribution with different characteristics.
This problem can be further decomposed depend-
ing on our access to unlabeled data from the target
distribution during training.

In a Domain Adaptation (DA) framework, a net-
work is trained using the source distribution and
its generalization performance is boosted by tak-
ing advantage of unlabeled samples from the tar-
get distribution. In a Domain Generalization (DG)
framework, only the source distribution is accessi-
ble and the objective is to generalize to any other
distribution without any prior knowledge of its na-
ture. Furthermore, each framework can be subdi-
vided into single-source or multi-source scenarios,
according to the number of source distributions that
are available during training.

A recent massive experiment [35] performed by
the Facebook AI Research (FAIR) group tested
many single-source and multi-source domain gen-
eralization algorithms and model selection (valida-
tion) strategies using the same network architecture
across different domain generalization benchmark
datasets. It was concluded that a vanilla supervised
learning algorithm, when trained with a good data
augmentation strategy can generalize just as well or
even better than most algorithms purposely built
for domain generalization. It was also found that
the model selection strategy was far more impactful
than the choice of algorithm. This indicates that
the generalization performance is strongly depen-
dent on the network’s capacity, which can be max-
imally used with simple data augmentation tech-
niques, suggesting that the key to achieving good
domain generalization results can simply be a good
data augmentation strategy.

This work continues the research effort on do-
main generalization by randomized domain shifting
and data augmentation, which could potentially be
effective in reducing the texture bias of CNNs and
improve their effectiveness in domain generalization
tasks.

3. Domain Shifting Experiments

Given the recent research work in Domain Gener-
alization based purely on data augmentation, we
wish to construct a method that randomly alters
image textures, such that networks trained on those
images become less sensitive to textures and more
sensitive to the shapes of objects.

A solution to this problem could be the AdaIN

6



stylization method, which is based on an auto-
encoder architecture with a VGG16 encoder and
decoder. Although this architecture may be altered
to generate random styles, these styles are heavily
conditioned on a style dataset of paintings. Train-
ing this architecture without a style dataset gener-
ates styles that are much less expressive and varied,
only consisting of slight colour variations. These re-
sults, coupled to the fact that this method is also
considerably expensive computationally, make this
method unfit for the purpose of data augmentation.

In this work we propose a second solution, also
based on an auto-encoder architecture, which solves
the mentioned problems.

Ideally, a random stylization method should be
able to reconstruct the input image with a high
degree of fidelity when no noise is introduced in
the auto-encoder network. The AdaIN styliza-
tion method achieves this when the same image is
used for content and style. A data augmentation
method should be lightweight enough to not cause
a considerable computational overhead on the main
method. It should also be as general as possible, in
a sense that, it should produce all possible varia-
tions of the transformation that it applies.

With these considerations in mind, a different ap-
proach is therefore devised where a simple convolu-
tional auto-encoder is used to learn a latent repre-
sentation of the textures in an image. The auto-
encoder has no information bottleneck. Instead an
encoder converts spatial information into channel-
wise information using down-sampling with strided
convolutions. This means that each pixel in the la-
tent feature maps encodes the texture of a patch in
the input image. A decoder based on transposed
convolutions is then tasked with reconstructing the
input image. A Mean Squared Error (MSE) recon-
struction loss is used between the input and output
images. An extra KL Divergence loss is used in the
latent space to softly constrain the representations
to have µ = 0 and σ = 1. The encoder and de-
coder can have 2 to 4 layers each, depending on
how wide we want the texture patches to be and
how non-linear we want the transformation to be.
The auto-encoder is trained on a set of content im-
ages using these two losses. Since there is no infor-
mation bottleneck, the auto-encoder should be able
to perfectly reproduce the input images and have
an MSE loss that tends to 0.

The purpose of the encoder-decoder architecture
is not to compress the information of the images. It
is rather to encode the images into a texture-space,
where they are transformed and then decoded back.
Therefore the total volume (C×W ×H) of the fea-
ture maps should remain constant at every layer of
the encoder. When a down-sampling is performed,
the number of channels should increase by the same

ratio i.e. dividing the resolution by 3 in height and
width, should be accompanied by a 9 times increase
in channel number. The information is therefore en-
coded channel wise and not pixel wise, creating the
aforementioned texture-space.

To perform randomized texturing of images the
auto-encoder is frozen and a transformation is in-
troduced in the latent space. The full architecture,
presented in Figure 12, consists of an encoder E,
a transformation T that introduces the noise in the
feature maps created by the encoder, and a decoder
D that generates the transformed images.

Figure 12: Encoder-Transformer-Decoder architecture.
During training, the Encoder (E) and Decoder (D) are
trained together, using the MSE Loss and a KL Divergence
regularizer. At inference time, a Transformer (T) transforms
the latent space, according to a noise vector z, before decod-
ing the image.

The key element of this architecture is the choice
of transformation T , which is responsible for intro-
ducing the noise vector z in a meaningful manner.

The following experiments showcase the type of
randomized texturizations that is possible to obtain
with the previously mentioned techniques. The en-
coder has 2 convolutional layers with a Hyperbolic
Tangent activation in between. The decoder has 2
transposed convolutional layers with the same acti-
vation in between.

This Auto-Encoder is trained on the MS-COCO
dataset for 25000 iterations with a batch size of 16
and a learning rate of 1 × 10−4 with Pytorch’s de-
fault ADAM optimizer. All images are resized to
505×505 pixels during training. The latent feature
maps have 243 channels and 57 × 57 resolution (
((505 + 2)/3 + 2)/3 ). The two convolutions with
a stride of 3 generate latent representations that
encode the texture in a 9× 9 patch.

Once the Auto-Encoder is fully trained, a trans-
formation can be performed in the space of tex-
tures which results in an output image that is trans-
formed in a spatially consistent manner (Figure 13).
The transformation can be a simple translation in
the space of textures, a rotation or an AdaIN trans-
formation. This technique allows the augmentation
of images with randomized textures with a very
small computational overhead when compared to
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the Style Transfer method.

Figure 13: Textured versions of the same image with a
translation transformation of the latent space.

4. Domain Generalization Experiments
The proposed texturization technique was then
tested as a data augmentation method in multi-
ple computer vision tasks, in multiple scenarios and
with multiple architectures of the main network.
Figure 14 shows examples of textured images from
the STL10 dataset.

Figure 14: Examples from the STL10 dataset with a ran-
dom texturization applied. Each column represents one class
in the following order: bird, car, cat, deer, dog, plane, ship,
truck. These images were used for training the networks.

A first round of experiments measured the tex-
ture bias of a ResNet34 network on the STL10 clas-
sification dataset. The texture bias was measured
using mixed-cue images, with the content of one
class and the style of another, as seen in Figure 15.

Figure 15: Examples of style transfer between different
classes of STL10. Top row: content images, Middle row:
style images, Bottom row: resulting images. These images
were used to evaluate the networks.

These images were generated using the aforemen-
tioned AdaIN Style Transfer technique applied to
images of different classes on the STL10 dataset.
The texture bias is the proportion of times the net-
work predicts the class that was used as style in-
stead of the class that was used for content, when
one of them is predicted.

The texture bias was measured on the baseline
training setting, without textured images, and then
with textured images at different levels of textur-
ization strength. Each experiment was reproduced
three times, to produce the mean and standard de-
viation results of Figure 16.

Figure 16: Texture Bias, Content Accuracy and Tex-
ture Accuracy while varying the values of the texturization
strength σ. The dashed line represents the optimal value of
σ.

It is concluded that using textured images during
training of the ResNet34 network produces a net-
work that is less texture-biased and that achieves
a better accuracy in identifying the content of the
mixed-cue images. This phenomenon happens un-
til a point at which the texturization is too strong
and network becomes incapable of learning due to
underfitting.

In a second round of experiments, this method
is tested in a semantic segmentation domain gen-
eralization task. Two network architectures, a
VGG16 Feature Pyramid Network and a ResNet101
DeeplabV2, are trained to segment road scene im-
ages in one simulated environment (GTA5 or Syn-
thia) and are tested in real road scenes (Cityscapes),
as seen in Figure 17.

Figure 17: Textured textured images from GTA5 and Syn-
thia (top), an unchanged image from Cityscapes and the
respective segmentation map (bottom).

In this more challenging setting, using textured
images during training always produces worst re-
sults than the baseline training scenario (Figure 18).
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This indicates that challenging tasks like semantic
segmentation domain generalization do not bene-
fit from the use of this data augmentation strat-
egy. The performance in the training dataset also
decreases as the texturization strength increases,
which leads to the conclusion that the use of tex-
tured images during training produces a severe un-
derfitting phenomenon. This could have been ex-
pected in the semantic segmentation task since this
task highly benefits from textural information and
requires the predictions of the network to be accu-
rate to the pixel level.

Figure 18: Mean Intersection over Union (mIoU) results of
the semantic segmentation experiments, with Vanilla data
augmentation (V) and Textured images (T).

A final round of experiments measured the ef-
fect of this technique on the domain generalization
performance in an object detection task. Three
Faster R-CNN architectures, with VGG11, VGG19
and ResNet50 backbones, are trained on the Vir-
tualKitti2 simulated road scene dataset and tested
on the Kitti real road-scene dataset. The task con-
sisted of detecting all the vehicles in an image, as
shown in Figure 19.

Figure 19: Example image from the Virtual Kitti 2 dataset
with respective vehicle bounding boxes.

Once again, this task proved too difficult when
training the networks with textured images and the
overall performance decreased. However, the per-
formance is mostly impacted when detecting small
objects (far away vehicles). The proposed method
increases the domain generalization performance in
the case of vehicles that occupy regions with more
than 96 × 96 pixels, in an image that is more than
1000 pixels wide (Figure 20). This indicates that
this technique performs as intended but it renders
the task of detecting small objects much more dif-
ficult and thus the overall result is negative.

5. Conclusions
In section 3 we explored different domain shift-
ing methods. Until now, image domain augmen-
tation used to be performed either with simple
transformations like image translations, rotations,

Figure 20: Mean Average Precisions (mAP) results of the
object detection experiments, with no data augmentation
(N) and Textured images (T).

scalling, additive noise, other kinds of noise, or
with more computationally expensive techniques
like style transfer. We first tried generalizing the
AdaIN based style transfer method to work with-
out a style dataset, this method generated images
that had different textures but the diversity of those
textures did not justify the computational resources
required just to run the data augmentation process.
This work proposed a novel technique for randomly
altering the texture of an image. This is achieved
with a Fully Convolutional Auto-Encoder architec-
ture, where no information bottleneck exists. The
image is down-sampled while being encoded and the
number of channels is increased in the same propor-
tion. The inverse process is performed by the de-
coder. This allows the Auto-Encoder to perfectly
reconstruct the images once fully trained. The re-
sulting latent space therefore encodes the square im-
age patches in a single vector per patch, encoding
the textures at each patch of the image. This tech-
nique is simpler and performs data augmentation in
a manner that is very suited CNNs, bringing only
a small computational overhead.

In section 4 we showed that the proposed tech-
nique successfully renders CNNs less texture-biased
in a classification task with mixed textural and
shape cues. We then tested our method in more
demanding scenarios. The semantic segmentation
experiments in domain generalization from a simu-
lated world to a real world revealed that introduc-
ing our data augmentation technique during train-
ing leads to severe underfitting. This shows that
CNN architectures do not have good and efficient
mechanisms to filter out textural information. In an
object detection scenario the same phenomenon was
observed. Interestingly, the technique was shown to
work for large object instances but the performance
in smaller detections remained severely affected.

The final conclusion is that the proposed data
augmentation technique, although it renders CNNs
less texture-biased, it does not help their domain
generalization performance due to an inefficiency of
CNNs when filtering out irrelevant textural infor-
mation.
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